

PYROWEAR® 53

Applicable designation: AMS 6308

Associated specification: UNS K71040

Type analysis

Single figures are nominal except where noted.

Iron	Balance	Molybdenum	3.25 %	Copper	2.00 %
Nickel	2.00 %	Chromium	1.00 %	Silicon	1.00 %
Manganese	0.35 %	Carbon	0.10 %	Vanadium	0.10 %

Forms manufactured

Bar-Rounds Billet

Description

Pyrowear 53 is a premium quality carburizing gear steel with a combination of high-temperature performance, fatigue resistance, deep hardenability, and excellent toughness. The alloy has a resisted softening at elevated service temperatures and possesses good temper resistance and high case hot hardness while maintaining high core impact strength and fracture toughness. Pyrowear 53 is triple vacuum processed by vacuum induction melting, followed by two cycles of vacuum arc remelting (VIM-VAR-VAR) to provide superior cleanliness and optimum metallurgical quality.

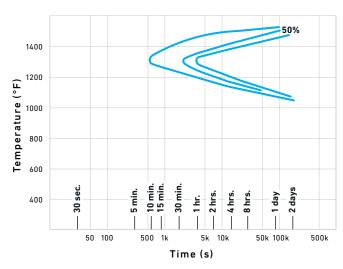
Key Properties:

- High-temperature performance
- Excellent toughness
- High core impact strength
 High case hot hardness
- Fatigue resistance

- Markets:
- Aerospace
- Defense

Applications:

Gears


Physical properties

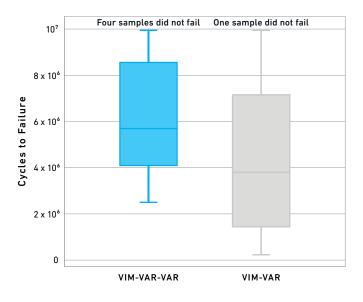
MEAN COEFFICIENT OF THERMAL EXPANSION (CTE)	
CHITICAL TEMILERATURE	RE SE
CRITICAL TEMPERATURE CO	RE
(1.00)	SE
co	RE
MARTENSITE START CA	SE
co	RE
MARTENSITE FINISH CA	SE

At or From
75 to 200°F (24 to 93°C)
75 to 300°F (24 to 149°C)
75 to 400°F (24 to 204°C)
75 to 500°F (24 to 260°C)
75 to 600°F (24 to 316°C)
75 to 700°F (24 to 371°C)
75 to 800°F (24 to 427°C)
75 to 900°F (24 to 482°C)
75 to 1000°F (24 to 538°C)
75 to 1100°F (24 to 593°C)
75 to 1200°F (24 to 649°C)
75 to 1300°F (24 to 704°C)
75 to 1400°F (24 to 760°C)
1505°F (819°C)
1340°F (727°C)
1605°F (874°C)
1455°F (791°C)
950°F (510°C)
265°F (130°C)
675°F (357°C)
-155°F (-104°C)

English Units	Metric Units
6.26 x 10 ⁻⁶ in/in/°F	11.26 x 10 ⁻⁶ length/length/°C
6.46 x 10 ⁻⁶ in/in/°F	11.62 x 10 ⁻⁶ length/length/°C
6.59 x 10 ⁻⁶ in/in/°F	11.82 x 10 ⁻⁶ length/length/°C
6.70 x 10 ⁻⁶ in/in/°F	$12.06 \times 10^{-6} length/length/^{\circ}C$
6.81 x 10 ⁻⁶ in/in/°F	12.25 x 10 ⁻⁶ length/length/°C
6.90 x 10 ⁻⁶ in/in/°F	12.42 x 10 ⁻⁶ length/length/°C
7.06 x 10 ⁻⁶ in/in/°F	12.70×10^{-6} length/length/°C
7.16 x 10 ⁻⁶ in/in/°F	12.88 x 10 ⁻⁶ length/length/°C
7.25 x 10 ⁻⁶ in/in/°F	13.05×10^{-6} length/length/°C
7.33 x 10 ⁻⁶ in/in/°F	13.19 x 10 ⁻⁶ length/length/°C
7.41 x 10 ⁻⁶ in/in/°F	$13.33 \times 10^{-6} length/length/°C$
7.48 x 10 ⁻⁶ in/in/°F	13.46 x 10 ⁻⁶ length/length/°C
7.51 x 10 ⁻⁶ in/in/°F	13.51×10^{-6} length/length/°C

TTT CURVES, AUSTENITIZING TEMPERATURE—1675°F (913°C)

Typical mechanical properties


CORE MECHANICAL PROPERTIES

Test material prepared as follows: Pseudocarburized (in inert atmosphere) 1700°F (927°C), 7 hours. Hardened 1675°F (913°C) 25 minutes, oil quench. Refrigerated -100°F (-73°C), 0.5 hour. Tempered 400°F (204°C), 2 hours + 2 hours.

TEST TEMPERATURE YIELD STRENGTH		ULTIMA STRENO	TE TENSILE STH	ELONGATION IN 4D	REDUCTION OF AREA	CHARPY V-NOTCH IMPACT			
°F	°C	ksi	MPa	ksi	MPa	%	%	ft-lbs	J
-65	-54	160	1103	193	1331	18	63	39-41	53-56
RT	RT	140	965	170	1172	16	66.5	87-95	118–129
212	100	_	-	_	_	-	_	103-120	140-163
350	177	130	896	175	1207	12	46	114-116	155–157

AXIAL FATIGUE PERFORMANCE

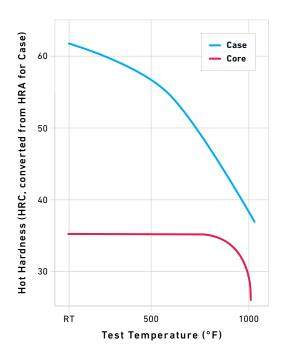
The VIM-VAR-VAR melt process provides improved fatigue life by refining microstructural cleanliness. Test conditions: R = -1, +/- 89 ksi, 20 Hz.

EFFECT OF AUSTENITIZING TEMPERATURE

Test material prepared as follows: Pseudocarburized (in inert atmosphere) 1700°F (927°C), 7 hours. Hardened from temperatures indicated below by oil quenching or air cooling. Refrigerated -100°F (-73°C), 0.5 hour. Tempered 500°F (260°C), 2 hours + 2 hours.

AUSTENITIZING TEMPERATURE (25 MIN AT TEMP)		OIL QUENCHE	OIL QUENCHED			AIR COOLED		
		CVNIMPACT	CVNIMPACT		CVN IMPACT		HARDNESS	
°F	°C	ft-lbs	J	HRC	ft-lbs	J	HRC	
1650	899	106, 97, 93	144, 132, 126	34	91, 91, 84	123, 123, 114	34.5	
1700	927	96, 98, 84	130, 133, 114	37.5	73, 75, 67	99, 102, 91	36.5	
1750	954	54, 54, 64	73, 73, 87	36.5	40, 52, 44	54, 71, 60	36	
1800	982	71, 67, 62	96, 91, 84	38.5	56, 44, 51	76, 60, 69	38	
1850	1010	68	_	39	54, 61, 65	73, 83, 88	39	

FRACTURE TOUGHNESS


Fracture toughness tests were conducted on samples taken from an 8.75 in. round bar. Samples were austenitized in neutral salt at $1675^{\circ}F$ (913°C) for 35 minutes, oil quenched, deep frozen at -100°F (-73°C) for 1 hour, and tempered at 500°F (260°C) for 4 hours. Testing was done per ASTM E399 at room temperature.

SAMPLE ORIENTATION	HARDNESS (HRC)	K _{IC}	ksi√in
L-R	36	115	120
R-L	36	115	120
C-R	36	115	120

HOT HARDNESS

Hot hardness tests were conducted on the case and core of Pyrowear 53. The test samples were prepared as follows: Carburized (7°F [-14°C] dew point) or pseudocarburized (in inert atmosphere) 1700°F (927°C), 7 hours. Hardened 1675°F (913°C), 25 minutes, oil quench. Refrigerated -100°F (-73°C), 0.5 hour. Tempered 400°F (204°C), 2 hours + 2 hours.

Heat treatment

Docar	buriza	tion
DECAL	vui iza	LIUII

Pyrowear 53 must be carburized to produce a carbon-rich case prior to hardening. As with all carburizing alloys, precautions must be taken to avoid decarburization during the hardening operation. A controlled-atmosphere furnace or neutral salt bath is suggested for hardening carburized parts.

Normalizing

Forgings are normalized by heating rapidly to $1850^{\circ}F$ ($1010^{\circ}C$) and cooling in air.

Annealing

Heat to 1285/1315°F (696/713°C), hold 4 to 8 hours and cool slowly in the furnace. Maximum hardness is 248 Brinell. To relieve machining stresses, heat to 1100°F (593°C), hold for 1 hour at heat, then air cool.

Carburizing

Carburizing may be performed in a pack or in gas. A more uniform gas carburization may be obtained by heating to carburizing temperatures before introducing the carburizing atmosphere. Carburize between $1600/1700^{\circ}$ F ($871/927^{\circ}$ C) for a period long enough to secure the desired case. A Rockwell C 55 case depth of about 0.040 in. and a total case depth of about 0.065 in. with a maximum carbon content in the case of about 0.80% were obtained by gas carburizing at 1700° F (927° C) for 7 hours in a laboratory endothermic atmosphere furnace at a dew point of 7° F (-14° C). The part may be hardened directly from carburizing by furnace cooling to 1675° F (913° C), followed by oil quenching to room temperature. Direct hardening after carburizing does not result in an ideal case structure of optimum impact properties. For improved toughness, cool to room temperature after carburizing, anneal and harden by oil quenching from 1675° F (913° C). Expected core hardness is Rockwell C 34/37.

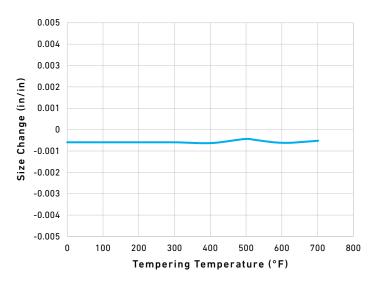
Hardening

Pyrowear 53 can be hardened by air cooling or oil quenching from $1660/1690^{\circ}$ F ($904/921^{\circ}$ C). Oil quenching produces the optimum core impact strength.

Deformation (size change) in hardening

Although Pyrowear 53 is air hardenable, oil quenching is recommended for optimum impact properties. To minimize size change and warpage during heat treatment, the alloy may be air hardened, but with some loss of impact strength.

Cold treatment


To obtain maximum case hardness and dimensional stability, cold treating after hardening is recommended. This is performed by holding the material for 1 hour at a temperature below -100°F (-73°C) and allowing a natural return to room temperature. The part should be tempered after the sub-zero treatment.

Tempering

Pyrowear 53 is designed to possess significantly greater case temper resistance than conventional alloys such as AISI 9310, 3310, or 8620.

SIZE CHANGE

Samples oil quenched from 1675°F (913°C) and tempered 4 hours at temperatures below.

CASE AND CORE HARDNESS

Test material prepared as follows: Tempering for 1 hour or for 2 hours + 2 hours after hardening and sub-zero treatments. For applications requiring greater dimensional stability, the 2 hour + 2 hour temper is suggested.

TEMPERING TEMPERATURE		HARDNESS (HRC) CORE			HARDNESS (HRC) CASE		
°F	°C	TEMPERED 1 HR	TEMPERED 2 + 2 HRS	TEMPERED 1 HR	TEMPERED 2 + 2 HRS		
As quenched a	ind refrigerated	34	34	66.5	66.5		
300	149	35	34.5	63	62.5		
350	177	35	35	62	62		
400	204	34.5	35	61.5	62		
450	232	35	35	61.5	61.5		
500	260	35	_	61	_		
550	288	35	_	61	_		

Workability

Forging

Heat uniformly to a temperature of 2000/2050°F (1093/1121°C). Do not forge below 1700°F (927°C). Forgings may be individually air cooled. Intricate forgings may be buried in vermiculite or furnace cooled.

For additional information, please contact your nearest sales office:

info@cartech.com | 610 208 2000

The information and data presented herein are typical or average values and are not a guarantee of maximum or minimum values. Applications specifically suggested for material described herein are made solely for the purpose of illustration to enable the reader to make his/her own evaluation and are not intended as warranties, either express or implied, of fitness for these or other purposes. There is no representation that the recipient of this literature will receive updated editions as they become available.

Unless otherwise specified, registered trademarks are property of CRS Holdings Inc., a subsidiary of Carpenter Technology Corporation.